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Abstract-A continuum damage model for rubber-modified epoxy adhesives is presented. The
macro- and micromechanical observations are translated into a constitutive theory based on ther
modynamics with internal state variables. An extension of the principle ofstrain equivalence, which
makes a phenomenological derivation more systematic, is proposed. Important features of the
material model are: (1) An isotropic damage measure is used. (2) The irreversible strain consists of
a deviatoric part due to plastic flow and damage, and a dilatoric part due to damage, (3) The criteria
for plastic flow and for damage growth are dependent on the hydrostatic stress. The model response
in tension, compression and shear is studied. The model is likely to be valid for a wider class of
polymeric materials.

1. INTRODUCTION

A body that is deformed generally undergoes irreversible and dissipative micromechanical
processes. On the macromechanicallevel these processes lead to permanent deformations,
loss of stiffness and heat generation. In many applications, however, only part of the
deformation behaviour is of interest and therefore the effect of some processes can be
excluded. In this paper, we are particularly interested in the form ofa constitutive equation,
which in addition to elastic-plastic behaviour also describes the fracture process in the
material. The micromechanical process that ultimately leads to fracture through the for
mation of a macrocrack is related to initiation and growth of surface and volume dis
continuities, i.e. growth of microcracks and microcavities. As a consequence the overall
response of a damaged material volume is characterized by a softening behaviour. This
local fracture process, which is referred to as material damage, was originally accounted
for by Kachanov (1958) in a work concerning creep rupture in metals. Since then the
damage process has been given a more general mathematical description in Continuum
Damage Mechanics (CDM). A material model including damage reflects the physical
processes leading to failure. This means that the corresponding load-bearing capacity of a
body (i.e. the failure load) can be obtained without use of a postulated fracture criterion
or the explicit assumptions needed in connection with a fracture mechanics approach. We
regard this as an important improvement in the analysis process. Also from a computational
point of view it seems natural to follow the material deterioration leading to the formation
and propagation of a crack. Mathematically, the damage is accounted for through the
introduction of a new field of scalar or tensorial character in the continuum description.
Central questions in such a formulation are the definition of a damage measure, its impact
on the mechanical behaviour and the form of an evolution law for the damage field. Within
the framework ofCDM, general formulations have been given to model creep damage [e.g.
Hayhurst et al. (1984) and Krajcinovic (1983)], fatigue damage [e.g. Chrzanowski and
Kolczuga (1980) and Marigo (1985)] and damage in brittle [see the comprehensive review
article by Krajcinovic (1989)] and ductile materials [e.g. Ju (1989), Simo and Ju (198'7a)
and Benallal et al. (1988) in the case ofsmall strains and Sima and Ju (1989) and Rousselier
(1981) in the case oflarge strains].

Most theories published deal with the damage process in metallic materials. The aim
of this work is to take into account the effects of damage on the constitutive behaviour of
a polymeric adhesive material. The type ofadhesive that we intend to model is an elastomer-
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modified epoxy adhesive that is typically encountered in aerospace structural applications.
This type of adhesive is also called a toughened epoxy adhesive due to the effect of the
second phase (the rubber) added, and it is probably the adhesive material most frequently
subjected to careful strength analyses. Although we have this particular material in mind.
the description we derive is likely to be valid for a wider class of polymeric materials.

Material softening and its influence of the failure behaviour of adhesive joints have
been investigated by Ottosen and Olsson (1988) and Gustafsson (1987) who established
closed-form solutions for lap joints loaded in pure shear. An interesting observation can
be made from the latter work: the load-carrying capacity of a joint mainly depends on thc
peak stress and on the fracture energy, i.e. the area under the stress strain curve, the
dependence of the shape of the curve seems to be less pronounced. A numerical treatment
of adhesive joints using interface elements and a saw-tooth formed constitutive behaviour
has been discussed by Stigh (1987).

The experimental determination of the complete response of a material is a difTicult
problem. To our knowledge a complete stress··strain curve for an epoxy adhesive is not
available. In the case of wood adhesives, however, the softening behaviour has been
determined by Wernersson and Gustafsson (1987) using a shear loaded specimen. Sec also
Wernersson (1990) for a more detailed discussion. The possibility of determining I he
complete response of the adhesive indirectly through measurements of the deformation of
a double cantilever beam has been discussed by Ungsuwarungsri and Knauss (1987).

When deriving a constitutive equation describing the macroscopic phenomena
observed, two different paths can be followed : the macroscopic response I., either derived
from observations of the microscopic mechanisms by use of homogenization techniques,
or a phenomenological standpoint is taken. In the latter approach the path goes in the
opposite direction, i.e. the model is constructed mainly with the macromcchanical obser
vations in mind. This approach is the traditional one to deal with plastic and creep behav
iour. In this paper we will derive a phenomenological model from a mathematical framework
based on thermodynamical considerations where the micromechanical processes are
accounted for by a set of internal variables (see Section 3). This means that we also use our
qualitative knowledge of the micromechanical processes when we select the form of the
theory. As a consequence the treatment of damage in our model becomes similar to the
traditional treatment of plastic flow. Even though thermodynamical considerations arc !l1

a sense not necessary [see e.g. the model for fracture and slip of interfaces in cementitious
composites derived by Stankowski £'1 al. (1991)]. it is believed that these considerations
provide further insight into the model: the relation to other models is more easily established
and generalizations follow more naturally.

2. PLASTIC FLOW AND FRACTURE OF RUBBER-MODIFIED EPOX)

The purpose of this section is to briefly summarize the characteristic macromechanical
behaviour and the micromechanics of the fracture process in rubber-modified epoxy that
motivates the form of the constitutive equation proposed. ft was noted by Kinloch et ul.
(1983) that "there is considerable controversy surrounding the exact nature of the energy
dissipating deformations that occur in the vicinity of the tip of a stationary crack during
loading or of a propagating crack ...". This circumstance still prevails (Bascom and
Hunston, 1989; Yee and Pearson, 1989). The mechanism for toughening and irreversible
deformations advocated by Kinloch and co-workers seems, however. to be well-founded
and is presented briefly in the following [see e.g. Kinloch and Young (1983) and Kinloch
el at. (1983)].

Epoxy resins are widely employed as the basis for thermosetting adhesives and as the
matrix material for fibre-composites. When cured it gives a material with high modulus and
good performance at relatively high temperatures. Unmodified epoxies are relatively brittle
materials with poor resistance to crack growth. A method to improve the fracture toughness
is to incorporate a second phase of rubbery particles into the epoxy matrix. The cured
material will then consist of small rubbery particles (typical size 111m) dispersed in, and
bonded to, the matrix of epoxy. Two interacting processes contribute to the increased
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toughness. The first one is that the multiaxial state of stress at the crack tip causes failure
and void formation in the rubber particles. The second, and most important, energy
absorbing process is that ofplastic shear flow in the matrix. Due to the stress concentrations
associated with the small particles, extensive, but localized shear yielding takes place in the
matrix. As a result, the fracture toughness of a rubber-modified epoxy can be 30 to 40 times
that of the unmodified epoxy.

The micromechanical processes leading to initiation and propagation of a crack in a
polymeric material appear not to be fully understood. It has been proposed that the crack
is initiated in highly strained areas of intersecting shear bands. It also appears as if growth
of a crack takes place through complicated processes due to extensive plastic flow ahead of
the crack tip. The reader is referred to Kinloch and Young (1983) for a more detailed
discussion in this matter. Furthermore, examinations of fracture surfaces have shown that
[e.g. Kinloch et al. (1983), Yee and Pearson (1989) and Bascom and Hunston (1989)] the
diameters of the cavities are larger than those of the undeformed cavities.

Plastic deformations in polymers can take place due to two different mechanisms:
shear yielding (a deviatoric process) and craze yielding (i.e. formation of microcracks
capable of transmitting loads across its faces; it is a dilatoric process) (Brown, 1986). In
the type of polymer which we intend to model, a highly crosslinked polymer, craze yielding
has not been observed in the matrix material [e.g. Kinloch et al. (1983) and Yee and Pearson
(1989)] and consequently plastic flow takes place essentially at a constant volume. (Also,
if craze yielding took place, it would be referred to as inelastic deformation due to damage
in our model.) Furthermore, experiments [Bauwens (1970), Bowden and Jukes (1972) and
Raghava et al. (1973)] have shown that the yield stress for polymers, unlike metallic
materials, is dependent on the hydrostatic state of stress. Experimental results for a rubber
modified epoxy can be found in the paper by Sultan and McGarry (1973). The viscous
behaviour of polymers is also well known. In the case of rubber-modified epoxy, exper
imental results are presented by Peretz and Weitsman (1982). In this paper we intend to
deal primarily with the rate-independent, or short time behaviour. The model we derive
allows, however, for a modification to include rate-dependency (see Remark 3.2).

From the observations made above we draw the following conclusions: (I) A pressure
dependent yield criterion must be used for the undamaged material. Since we want to model
plastic flow as a non-dilatoric process this implies that the flow law must be of non
associated character. (2) It is obvious that a hydrostatic state of tensile stress promotes
damage growth. This dependence must be considered by the evolution law for damage
growth. (3) Since damage is associated with growth of microvoids and microcracks that
probably do not close completely upon unloading, a model ofdamage should give a dilatoric
contribution to the irreversible deformation. Also, the loss of bond between the small rubber
particles and the matrix and the subsequent growth of the holes must be counted as damage.
In addition we will make a number of assumptions. It will be assumed that the damage
affects the material response isotropically. This implies that a scalar damage variable is
sufficient. An anisotropic measure is probably more correct but tremendous experimental
difficulties arise in connection with the calibration of such a material description to exper
imental results. In order to obtain as simple a model as possible it seems reasonable, as a
first step, to adopt an isotropic damage measure. It will also be assumed that the undamaged
material has a linear elastic range and that the material exhibits a hardening behaviour.
For the sake of simplicity we will assume isotropic hardening.

3. A CONSTITUTIVE MODEL INCLUDING DAMAGE

3.1. Strain equivalence principle
The measure of damage and its influence on the mechanical behaviour is introduced

through the concept of strain equivalence. If (f is the homogenized stress tensor (i.e. the
stress tensor when the body is treated as a continuum), the effective stress tensor lr is
obtained as

(I)
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where dE [0, I) is a scalar that measures damage. The principle of strain equivalence now
reads [see e.g. Lemaitre and Chaboche (1990)]:

"The constitutive law for the damaged material is given by the constitutive law
for the undamaged material if the stress tensor is changed for the effective stress
tensor."

The application of this principle does not fully specify a damage constitutive law since such
a law also has to include an evolution law for the variable d. However, we propose here an
extension of the principle which gives guidance in this respect. It is based on the following
observations: (I) In the thermodynamic framework which we use, certain thermodynamic
forces occur. (2) It is seen that not only the stress but all of these forces, except the one
associated with d, naturally appear in both effective and homogenized form; the one
associated with d has only the local, or effective character. It seems natural to treat all
forces on an equal basis and. thus. we propose the following extended principle of strain
equivalence:

"The constitutive law should he formulated in terms of effective thermodynamic
forces, and the constitutive law for the undamaged material should be recovered
from that of the damaged by setting d = 0 and changing the effective ther
modynamic forces back to the homogenized ones."

3.2. A damage model derived as a Generalized Standard Material
If the concept of strain equivalence is the first cornerstone of our theory. the second

one is the structure brought by the concept of generalized standard material, to be described
in a restricted setting below. Firstly, the total strain tensor 8 is split into the reversible
(elastic) part 8

e and the irreversible one 8":

(J'-I

Next, the state variables of the theory have to be decided on: as discussed earlier, the
undamaged material is taken as linear elastic-plastic with isotropic hardening and the
hardening is represented by a scalar internal variable p. As a further internal variable we
take the damage measure d. A choice of the homogenized free energy which leads to an
identification of effective and homogenized forces is:

(3)

The free energy for the undamaged material is taken as

(4)

where the function h represents the hardening behaviour and E is the fourth-order elasticity
tensor. The form of h is left unspecified at this stage.

Once the internal variables are specified, consequences ofClausius-Duhem's inequality
are obtained by Coleman's method [Coleman and Noll (1963) and Coleman and Gurtin
(1967)]. They are, the state law

(5)

and the reduced dissipation inequality

(6)

where, by definition.
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(7)

(8)

and a superposed dot denotes time derivative. Note that (5) implies that a- = E: 8
e and (7)

shows that R has a homogenized character: the corresponding effective thermodynamic
force is RI(I-d). As pointed out earlier, Y has a naturally effective character. This ther
modynamic force is called the damage energy release rate and can be thought of as a
"damage driving" force.

The inequality (6) should be satisfied for all processes. An elegant way of ensuring
this, which stems from the work of Moreau (1974), Ziegler (1983) and Onsager (1931a, b),
is to assume the existence of a potential

</J = </J((1, R, Y),

which is convex but generally non-differentiable. If

(9)

and

</J(O, 0, 0) = 0, oE o</J(O, 0, 0) (10)

(11)

then it is seen (Moreau, 1974) that (6) is always satisfied. Here, o</J denotes the subdifferential
of </J (see the Appendix). Equation (I I) represents a generalized normality principle and
materials which are specified in this way by a free energy 'II and a potential </J (actually the
dual ofa dissipation potential) are called Generalized Standard Materials (GSM) (Halphen
and Nguyen, 1975).

The class of materials covered by the above analysis can be slightly extended, without
conflicting with (6), by including the state variables-.-as parameters in </J, i.e.

</J </J((1, R, Y; 8e, p, d). (12)

The subdifferentiation is still taken with respect to the first three arguments. The possibility
of this extension is utilized in this work and it is needed if we are to comply with our
modified strain equivalence principle.

In this work rate-independent materials will be primarily considered. This implies that
</J should be an indicator function (see the Appendix) of a closed convex set C, Le.

</J = Ie·

The convex set will be specified by functions

II = 11(~/(1-d), RI(1-d); 8
e
),

12 = 12(um/(l-d), Y; p, d),

so that

(13)

(14)

(I 5)

(16)

Here, the stress tensor is split into its deviatoric and spherical parts uD and umI, respectively,
i.e.

(17)

SA! 30:19-"
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where I is the identity tensor. We see that C can be interpreted as a permitted domain for
the thermodynamic forces. The coupled functions II and I2 can be interpreted as a flow
surface and a damage surface, respectively. To be more specific, we will use here a modi
fication of the von Mises yield criterion. By including (Jill! (I ~ d) = ~tr(E: In as a parameter
in f], the yield stress becomes dependent on the spherical part of the stress tensor as has
been experimentally observed for polymers. However, by expressing this parameter in terms
of Il

c
, the flow law becomes non-associated in character, and plastic flow becomes deviatoric,

and consequently, volume preserving, as is also experimentally observed for polymers. The
modification of the yield stress due to hardening is represented by the effective thermo
dynamic force RI(l-d). Thus

( I t\)

where J 2«(1.D) = daD: aD) 1/2 is the second invariant of the stress deviator and the function
9 I represents the initial yield stress.

For f2 we simply take it as a linear function of Y and introduce a dependence on
spherical stress through a function 92' The presence of this function introduces an irre
versible dilatational strain. Furthermore, a function K is introduced which describes how
the threshold for damage growth decreases as the material properties deteriorate with plastic
strain and also how it increases with further damage. Thus

(19)

In this paper we will consider a case when the desired form of92 makesj~ non-differentiable.
Therefore, we generalize the description of the domain f2 ~ 0 by using two differentiable
functions,.f21 and f22' so that

(20)

where

(21)

and

(22)

This means that we express the original damage surface by two damage surfaces that
intersect in a non-smooth fashion.

From (A4) of the Appendix it is now clear that the complementary constitutive law
(11) corresponding to this choice of C becomes

(23)

(24)

(25)
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II ~O, 1 ~ 0, III = 0, (26)

121 ~ 0, /11 ~ 0, 121/11 = 0, (27)

122 ~ 0, /12 ~ 0, 122/12 = 0, (28)

where g'(x) = dg/dx. Note that our multisurface description of C leads to a form of the
complementary law that resembles that proposed by Koiter [see e.g. Koiter (1960)] for
multisurface plasticity. Also note that i/(1-d) can be substituted for a new multiplier, say
t so that when damage is not present, i.e. /11 = /12 = 0, the constitutive law becomes
independent of d. Since (JD/J2((JD) is of order zero in (JD, this implies that the strain
equivalence principle is satisfied. From (23) it is seen that the irreversible part of the strain
consists of a deviatoric part due to plastic flow and damage and a spherical part due to
damage. A standard calculation shows that the deviatoric effective plastic strain can be
identified with the internal variable p, i.e.

(29)

Next, we will investigate the dissipation in our model. From (6) and (23)-(25) we
obtain

(30)

and since 11 = 122 = °when A> °and il2 > 0, we find in this case that

which shows that we must haveg, ~ °and a sufficient condition for (6) to hold is

Remark 3.1. It is of interest to make some remarks on the relation of the present model
to the similar one presented by Ju (1989). [See also Simo and Ju (1987a).] First of all it
should be noted that Ju's model is not derived within the framework ofGSM. Furthermore,
an important difference, as compared to our model, is that Ju aims at modelling only
microcracks which do not result in a volume change. Thus, the function g2 is constant in
that work. Another important point when comparing with Ju's work is that we take K to
depend on plasticity (through p). Ju seems to attempt to introduce the influence ofplasticity
on damage through the generalized force Yonly. That is, the example of h(P) that he gives
is h(P) = Rop+ Wp 2, where R o is said to denote the initial yield radius and () the hardening
slope. However, such a free energy implies that no plastic work is dissipated. The present
framework allows for the construction of a mechanically equivalent but thermodynamically
more sound theory.

Remark 3.2. In our constitutive model we did not take into account the viscous
behaviour of the material. The present model allows, however, for a modification in
this direction. Mathematically, this can be accomplished by a regularization of the non
differentiable dissipation potential <p, i.e. a regularization of the indicator function Ie. For
example, if

c = {x Ij;(x) ~ 0, i = I, 2, ... , n}
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then a possible regularized form Q(x) or lc<x) is defined by:

Q(x) = I Q,(x).
1

Q,(x) = w(j;(x)).

where

{

K (I)' I

w(j) = .11+ I K

o

f> 0,

r~ 0,

and K and 11 are material constants. The possibility of performing only a "partial" regu
larization leading to e.g. viscous plastic and a non-viscous damage behaviour, is also
interesting. In that case ¢ becomes the sum of a differentiable and a non-differentiable part.

4. MODEL RESPONSE

The purpose of this section is to show the typical material response of our rate
independent constitutive model and how variations of the material parameters affect the
response for the following choice of the yet unspecified functions h,.el 1,.el2 and K:

h(p) = i(jp2 .

.41(X) = k-¢.\.

q,(x) = I).Y.

h(p. d) = f-'Y.p+lid.

It is easily verified that g2 fulfills the sufficient requirement for non-negative dissipation.
The functions Ih I21 and I22 are now fully specified. In Figs I and 2 the flow surface and
the damage surface are shown. The material constants introduced have the following
interpretations: (j is a plastic hardening constant; k is the initial yield stress; ~ represents
the yield stress dependence on the hydrostatic state of stress; f is the initial damage
threshold; 'Y. and lJ describe how the damage threshold is affected by plastic flow and
damage; the constant YJ is the damage growth sensitivity due to a hydrostatic state of stress.
Furthermore, we assume that the initial reversible (elastic) response is isotropic. We let E
and v denote Young's modulus and Poisson's ratio. respectively.

at
Fig. I. The now surface!, = () in the etrcctive principal stress space.
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121 and 122 < 0

Fig. 2. The damage surfaceI" = 0,122 = O.

We are primarily interested in the material response when it is used as a thin adhesive
layer between two stiff bodies. Therefore we will investigate the stress~strain relation of the
canonical deformation modes (see Fig. 3) of such a layer, i.e. uniaxial straining with no
contraction (only 811 #- 0) and pure shear strain (only 8 12 #- 0).

Our material description involves nine parameters (E, v, ~, k, e, Yf, I, IX and f3) which
have to be determined from experiments. The most convenient situation is of course if the
constitutive law can be integrated to give closed-form expressions of the material response
for some simple loading situations. When the corresponding experimental results are avail
able the material parameters can be calculated so that the constitutive response fits the
experimental result approximately. Unfortunately, it was found that it is practically imposs
ible to obtain closed-form expressions even for the simple loading cases mentioned above.
Instead, the constitutive equation has to be integrated numerically. We have chosen to
make use of the "operator splitting" methodology originally proposed for elastoplasticity
by Simo and Ortiz (1985). We have used the three-step operator split algorithm for rate
independent problems involving damage evolution proposed by Ju (1989). See also Simo
and Ju (1987b) for a discussion of this type of algorithms in connection with damage
evolution problems.

As a consequence of the need for a numerical integration of the constitutive equation,
numerical techniques must also be used to fit the response to experimental data. A discussion
of the various optimization algorithms available can be found in Haggblad (1985). The

r--,

D+u
L.__-J

Ett+D Et2 ,D

Fig. 3. The canonical deformation modes (only 8" # 0, only 812 # 0) ofa thin adhesive layer joining
to stiff bodies.
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Fig. 4. Response in tension when varying O. See Table I for input data.

optimization algorithms have in common that a rough estimate of the parameters are
necessary as starting values for the optimization procedure. In Figs 4-13. the influence of
the different material parameters on the response in tension, compression and shear is
systematically examined. Finally. a typical response in a tension-compression test and the
corresponding damage evolution is shown in Fig. 14. The input data corresponding to each
figure is shown in Table 1. This clarifies the role of the parameters so that reasonable input
data for an optimization procedure can be established.

5. CONCLUSIONS AND DISCUSSION

A constitutive model. which in addition to elastic-plastic behaviour also describes the
effects of material deterioration. has been derived using a phenomenological approach. It
rests on the mathematical structure brought by GSM and the principle ofstrain equivalence.
We have proposed an extension of this principle that makes the reasoning more coherent.
The most important features of the model are: (1) An isotropic damage measure is used.
(2) The irreversible strain consists of a deviatoric part due to plastic flow and damage. and

-- theta = 0

300

600

rl

O.U 2U

D7
I I

Shear Strain EPSl2 (%1

Fig. 5. Response in shCaI' when varying P. Sec Table I for input dala.
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Fig. 6. Response in tension and compression when varying~. See Table I for input data.
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'" 60.0
Q.

6
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::E

"tii 40.0
z
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~

'" 30.0
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E
0

Z 20.0
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Fig. 7. Response in tension when varying ,.,. See Table I for input data.

Table I. Input data to Figs 4--12

e ~ ,., f3 ex / k
Fig. No. IMPa] 1-] 1-] IMPa] IMPa] IMPa] IMPa] Remark

4,5 see Fig. 0 ( ) ( ) ( ) I] 30 f.t = 0, t, s
6 0 see Fig. ( ) ( ) ( ) I] 30 f.t = 0, t, c
7 0 0 see Fig. 1.0 ( ) 0.5 I] ;'. = 0, t
8,9 ( ) ( ) 0 see Fig. ( ) 0.5 I] ;: = 0, t, s
10, I I 0 0 0 0.5 see Fig. 0.5 30 t, s
12, 13 300 0.125 0.003 0.5 100 see Fig. 30 t, C, S

14 300 0.125 0.003 0.5 100 0.750 30

( ) means that output is independent of this parameter.
I ] means that the parameter has been given a large value (=>;'. or J1 == 0).
t = tension, s = shear, c = compression.
E = 3500 MPa, v = 0.36.
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1.5

1.0 20
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Fig. 8. Response in tension when varying Ii. See Table I for input data.
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Fig. 9. Response in shear when varying Ii. See Table I for input data.
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Fig. 10. Response in tension when varying x. See Table I for input data.
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Fig. 11. Response in shear when varying (1.. See Table 1 for input data.
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Fig. 12. Response in tension and compression when varying I. See Table 1 for input data.
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Fig. 13. Response in shear when varying I. See Table 1 for input data.
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a dilatoric damage part. (3) The criterion for plastic flow and for damage growth is
dependent on the hydrostatic stress. Note that. since the plastic-damage part of flow law is
volume preserving, it is non-associated in character. The model is probably valid for a
larger class of polymeric materials than the specific one we have in mind.

A constitutive model including damage is of interest in practical calculations because
failure loads can be obtained without use of a postulated fracture criterion or fracture
mechanics. Such methods are usually based on the stress or strain state obtained neglecting
the effects of material damage. Also, typical assumptions in fracture mechanics as crack
length, direction and location are avoided. Also, couplings to other fields in the continuum
description can be taken into account. In a material description including damage, the
fracture behaviour is inherent in the constitutive model. For instance. a domain with
completely damaged material constitutes a crack.

We have aimed at deriving as simple a model as possible. Therefore an isotropic
damage measure was adopted and the strains were assumed to be small. Some of the
recently developed adhesives can probably not be treated under these assumptions. The
generalization ofa model of this kind to include large deformations is therefore an important
point for future work. It should, however. be remembered that a formulation of a large
strain theory for plastic flow (even without damage) still is a matter of controversy and no
unified treatment seems to exist. Also, the need for experimental techniques and results to
support a phenomenological derivation is obvious.
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APPENDIX

This Appendix gives a short presentation of the concepts and results of convex analysis, essential for the
developments in Section 3 of the paper. An introductory treatment of convex analysis is given by van Tiel (1984).

Let <Il: Rn ..... R be convex but generally non-differentiable. At a point x ERn, where <Il attains a finite value,
the subdifferential iJ<Il(x) of <Il is the set of all y ERn which satisfy

where the dot denotes inner product.
<Il(z)-<Il(x) ~ y' (z-x) \1'zERn, (AI)
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The indicator function of a closed convex set C c R" is the function

If the set C is given by

{
o

[c(x) =
'J

C = :xER"I!,(x) ~ O.

if H, C.

ifx<tC

1, 2,. 11:.

(A2)

\I'd)

where!: are continuously differentiable real-valued convex functions, then

"
Cldx) = (y E' R" I y = L i.,Vf,(x). i,? O. {,(xl? 0, i.,};(x) = O. i = 1,2...11:.

i"" I

where V is the gradient operator.

(A4)


